www.www70655.com

信息流广告投放如何做数据分析?

时间:2021-06-28 15:01  作者:admin  来源:未知  查看:  
内容摘要:随着互联网人口红利的消失,各大互联网产品都争先恐后开始做用户增长,希望以最低的成本拉新促活更多用户。用户增长的策略和手段有很多,其中互联网效果广告投放是非常重要的一种手段。 在互联网广告投放过程中,负责投放的运营同学为了保证最优的投放收益率...

  随着互联网人口红利的消失,各大互联网产品都争先恐后开始做用户增长,希望以最低的成本拉新促活更多用户。用户增长的策略和手段有很多,其中互联网效果广告投放是非常重要的一种手段。

  在互联网广告投放过程中,负责投放的运营同学为了保证最优的投放收益率,会从广告的各个角度去做投放优化,如:文案、图片、排版、媒体位置以及定向人群等等。而数据分析能从量化的角度指导运营如何去投放广告,如何优化投放组合,从而降低用户获取的成本。所以本文会介绍一些互联网广告投放中的数据分析方法论。

  信息流广告是移动互联网时期产生,穿插在内容流中的广告,信息流广告有图文、图片、短视频等不同形式。因为信息流广告是完全以同样的形式穿插在内容流中,所以用户打扰性低,不注意左上角的“广告”二字,很容易被当作普通内容来浏览甚至互动。

  因为信息流广告完美平衡了媒体、广告主和用户的利益,而且信息流广告可以通过算法实现“千人千面”的推送,所以信息流广告已成为媒体广告商业化的重要部分。常见的信息流广告:微信朋友圈、今日头条和抖音等等。

  从信息流广告的生态看来,目前涵盖了广告主、媒体、第三方创意平台、数据平台以及监控平台等。

  第三方创意平台:提供可按行业、媒体、广告样式、素材类型、设备、时间等多维筛选查看投放素材;

  第三方数据平台:提供的服务一般包括用户洞察即消费者画像、用户/人群包管理及投放转化分析;

  第三方广告监测平台:提供的是投放、效果数据的统计监测服务。广告主是流量的买方,媒体或投放渠道是流量的卖方,监测任务一般由第三方机构来担任。

  当前信息流广告主要是以RTB(公开竞价)的方式售卖,媒体会将广告位售卖给使他们收益最大化的广告主,通常用eCPM(预估千次展示收益)来衡量一个广告能给媒体带来的收益。其中eCPM=CPC出价*预估CTR,至于为什么用eCPM衡量广告带给媒体的收益,如果一个位置的CPC出价很高,而且点击的可能性也很大,那么媒体获得收益最大化。

  在竞价成功获得广告曝光机会后,广告的实际收费并不是按照出价计费;而是采用第二高价机制,即根据第二名出价的eCPM和广告本身的预估CTR计算出来的,具体计算公式为:

  根据广告竞价的逻辑以及最后计费的逻辑,可以推导出预估CTR是广告竞价成功的重要影响因素,也是提高广告ROI的重要因素。而预估CTR和人群定向、投放时间、投放上下文、素材类型都有强相关性,怎样的投放组合下预估CTR最优,是需要从多次广告中积累的。

  在做广告投放效果分析,首先要明确广告投放的衡量指标。不同的业务场景有不同的效果衡量标准,但是大体上都是以用户转化率和产生收益额来推导。以电商行业的信息流广告投放为例,广告投放后用户转化路径如下:

  因此,我们日常重点关注的指标包括以下部分,一般ROI是渠道价值重点衡量指标,因为他表示了流量成本和转化收益的真实关系。ROI都是基于一定时间周期计算而得到,如24小时ROI、7天ROI等等,这个可以根据实际需求来选择。

  在确定衡量指标ROI后,我们由此来判断广告投放组的转化是否达标;对于不达标的投放组合,可通过公式拆解的方法判断是转化率太低还是客单价不合格或者还是成本消耗太高;再针对性的去优化问题,

  影响广告转化率的因素很多,如广告定向人群、广告创意、广告文案、广告位置等等。在前文的竞价广告的竞价原理里也提到,通过提高预估CTR,可以提升ROI。因此,在广告投放中需要找到最优的投放组合,提升CTR或者转化率,从而提升ROI。找寻最优的投放组合,目前用到最多的方法是AB测试,以及用朴素贝叶斯算法预估转化率比较高的人群定向投放组合。

  如下面的例子,我们同时设置两组AB测试组;分别测试性别和系统版本在同一创意下,转化率和点击率是否有显著差别。

  对照组和试验组同时上线,收集广告曝光、点击和转化数据,一般数据收集量需要满足:

  广告点击率一般在3%左右,根据历史投放经验一般保证曝光量能在10000次以上。

  广告的点击率和转化率都是比例指标,根据中心极限定律可以知道他们一般近似服从正态分布。所以,点击率和转化率的AB测试就是比例之差的双边检验,检验的统计量也是服从正态分布,具体公式是:

  双边检验:z变量的值介于-1.96~1.96之间时,已经涵盖了95%的可能结果;因此对于95%的显著性水平,如果上面计算的z值在这个范围之外,则可以拒绝原假设;

  以上面的例子计算z值,可以看出性别男和女的点击率和转化率没有显著差异,操作系统Android和iOS在点击率上有显著差异。

  朴素贝叶斯算法是基于朴素贝叶斯公式进行分类的一种算法,可以计算出属于某一类的概率;之所以称为朴素,是因为它假设特征之间是相互独立的。但是在现实生活中,这种假设基本上是不成立的。即使是在假设不成立的条件下,它依然表现得很好,尤其是在小规模样本的情况下。

  其中P(AB)表示:B发生后A发生的概率;通过贝叶斯公式可以看出计算P(AB)只需计算出后三项。下面以实际信息流投放案例进行介绍:

  通过朴素贝叶斯算法,以及历史转化数据的用户画像分布,可以计算各个广告定向组合下的转化概率。这样可以对于那些高转化率的广告定向组合优先投放,或者给予高转化的定向组合更高的出价,低转化概率的定向组合更低的出价,达到广告转化效果的整体优化。

  反作弊是一个比较复杂的过程,在金融、支付、内容生产及广告等多个业务场景下都必须做的事情,是一个一直需要提升且不断和黑产对抗的过程。而对于广告反作弊,识别异常流量和转化的主要用途是:一方面可以计算修正ROI,更合理的评估渠道质量;一方面可以识别异常,实时拦截减少异常流量消耗。

  一个完整的反作弊体系,涵盖了异常监控、发现异常、分析异常以及处理异常的过程;数据分析人员要用到规则、指标及模型等多种手段方法才能做好异常发现。因此,本文不详细展开讲广告反作弊这一部分。

  以上就是广告投放过程中,数据分析师经常需要做的工作。总结一下,广告正式投放前,会通过AB测试找寻最优投放组合;通过贝叶斯算法预测最优广告定向;广告投放后,会基于ROI等指标分析广告投放效果,对渠道价值进行衡量,并协助产品和运营优化广告转化提升ROI;另外,在广告正式投放后,需要从数据角度分析发现异常激活和异常订单,再基于修正总GMV(去掉异常GMV后)去更合理的衡量渠道价值。

  希望上面介绍的广告投放数据分析方法,能对你日常的工作或者学习有帮助,感谢阅读~

  大神你好,你的文章好棒!请问能否转载至我们公司的内网供大家学习?会注明文章的出处~

  因为这篇文章中有两处错误,但是修改不了。如果有需要,我可以邮件给你一份修正后的版本。

  计算Z值检验统计量公式的 p1(1-p2) 还是p1(1-p1),算的数字跟你得到的结果不太一样

  贝叶斯的案例里面,男生转化和不转化的比例之和是100%,转化=1里面 男女比例之和也是100%,我带入我们家的数字总感觉很奇怪,主要是以性别为主计算转化和未转化的比例,675555香港开奖结果开奖结果,还是其他情况呢

  贝叶斯案例里面的数据,我不小心粘体错了图片。正常数据应该是:不同维度下,转化=1的和及转化=0的和都是100%;也就是说:我们看的是是否转化下的画像分布。

  感谢作者讲解,有个问题希望可以得到进一步的解答:ABtest例子中的性别点击率z值具体是将哪几个数据代入了公式中的p1, p2, n1, n2呢?

  比如计算点击率的z值,p1和p2分别是试验组和对照组的点击率,n1和n2就是对应的曝光量;如果计算转化率的z值,p1和p2分别是试验组和对照组的转化率,n1和n2就是对应的点击量。

  2、你计算的思路过程和我计算的是一样的;至于结果对不上,是因为用户定向数据我贴错了;当时编了两份数据,不小心贴错了。我数据修改后,你再看下应该就没问题了。

  听到很多言论说在中国程序员是吃青春饭的,那么产品经理呢,也吃青春饭吗?

  人人都是产品经理(是以产品经理、运营为核心的学习、交流、分享平台,集媒体、www.hao58123.com!培训、社群为一体,全方位服务产品人和运营人,成立9年举办在线+期,线+场,产品经理大会、运营大会20+场,覆盖北上广深杭成都等15个城市,在行业有较高的影响力和知名度。平台聚集了众多BAT美团京东滴滴360小米网易等知名互联网公司产品总监和运营总监,他们在这里与你一起成长。